Two-Grid Crank-Nicolson Finite Volume Element Method for the Time-Dependent Schrödinger Equation
نویسندگان
چکیده
منابع مشابه
A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملCrank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain
Motivated by the paraxial narrow–angle approximation of the Helmholtz equation in domains of variable topography, we consider an initialand boundaryvalue problem for a general Schrödinger-type equation posed on a two space dimensional noncylindrical domain with mixed boundary conditions. The problem is transformed into an equivalent one posed on a rectangular domain and we approximate its solut...
متن کاملA posteriori error control and adaptivity for Crank-Nicolson finite element approximations for the linear Schrödinger equation
We derive optimal order a posteriori error estimates for fully discrete approximations of linear Schrödinger-type equations, in the L∞(L2)-norm. For the discretization in time we use the Crank–Nicolson method, while for the space discretization we use finite element spaces that are allowed to change in time. The derivation of the estimators is based on a novel elliptic reconstruction that leads...
متن کاملStabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations
This paper provides an error analysis for the Crank–Nicolson extrapolation scheme of time discretization applied to the spatially discrete stabilized finite element approximation of the two-dimensional time-dependent Navier–Stokes problem, where the finite element space pair (Xh,Mh) for the approximation (uh, p n h) of the velocity u and the pressure p is constructed by the low-order finite ele...
متن کاملCrank-nicolson Finite Difference Method for Solving Time-fractional Diffusion Equation
In this paper, we develop the Crank-Nicolson finite difference method (C-N-FDM) to solve the linear time-fractional diffusion equation, formulated with Caputo’s fractional derivative. Special attention is given to study the stability of the proposed method which is introduced by means of a recently proposed procedure akin to the standard Von-Neumann stable analysis. Some numerical examples are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics and Mechanics
سال: 2022
ISSN: ['2070-0733', '2075-1354']
DOI: https://doi.org/10.4208/aamm.oa-2021-0233